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SUMMARY 

The use of the finite element method in solving the problem of flow of a Newtonian fluid in periodically 
constricted tubes is explored. The performance of eight node serendipity and nine node Lagrangian elements 
is compared. It was found that the Lagrangian element results in unstable velocity fields when stagnant 
or recirculation regions are present. This is characteristic of tubes with large expansion zones. The eight 
node element does not exhibit instabilities. Both elements give accurate pressure fields. This behaviour is 
contrary to traditional results obtained for flow problems with similar geometrical characteristics. This 
suggests that the periodicity of the boundary conditions might be the cause of the instabilities in the 
numerical solution. 

The use of the continuity equation to simplify the viscous terms in the Stokes equations resulted, in this 
particular case, in a deterioration of the rate of convergence of the algorithm. 
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INTRODUCTION 

In recent times there has been an increasing trend to use the finite element method in the solution 
of fluid mechanics and transport phenomena problems. This technique has proved to be very 
adequate for treating irregular and complicated geometries owing to the versatility of the method 
in the description of the boundaries of the solution domain. Furthermore, complex boundary 
conditions can be easily incorporated into the numerical solution in the form of boundary 
integrals, which are specially useful for treating natural boundary conditions. 

Early attempts to solve the Navier-Stokes equations in closed domains via finite elements 
were performed by Atkinson et al.', Oden and Wellford' and Taylor and Hood.3 These first 
investigations focused mainly on the efficiency of the various finite element formulations of the 
flow problem. Taylor and Hood3 concluded that the primitive variables (pressure-velocity) 
formulation of the Navier-Stokes equations provided a finite element algorithm more efficient 
from a computational point of view than that obtained from a streamline-vorticity formulation. 
These investigators also determined that the finite element algorithm was better when the basis 
functions used to represent the velocity were an order higher than those used to represent the 
pressure. This scheme is called mixed interpolation and its advantages have been further studied 
by Olson and Tuann4 and more recently by Sani et a1.5*6 

The choice of the type of finite element to use in the solution of a particular problem has 
been traditionally based on experience or trial and error. Recently, more effort has been devoted 
to comparing the performance of various elements and approximating functions. Huyakorn 
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et ~ 1 . ~  compaired the solutions obtained by using several elements for two test problems in- 
volving steady flow through a sudden expansion and free thermal convection in a square cavity. 
The unstable pressure patterns observed when the Navier-Stokes equations are solved by using 
certain types of finite elements were studied in detail by Sani et ~ 2 . ~ 9 ~  

One of the objectives of this work is to compare the performance of two types of quadrilateral 
elements (the 8-node serendipity and the 9-node Lagrangian elements) in the solution to the 
Stokes and continuity equations for the case of steady flow through periodically constricted 
tubes. This problem has been previously solved by collocation 
and perturbation techniques.” The solution is of interest not only to the study of transport 
phenomena in constricted tubes but also as an important step in the modelling of porous media 
p r o c e ~ s e s . ~ ~ ~ ” ~  

finite differences’ 

FORMULATION OF THE PROBLEM 

Consider the viscous flow of an incompressible Newtonian fluid through a periodically constricted 
tube consisting of the repetition along the x-axis of the unit cell structure shown in Figure 1 ,  
under steady-state conditions. The periodicity of the wall profile can be expressed as 

Y&(x’) = r&(x’ Ifl nl), n = 0,1,. . . (1) 

V”V‘ = 0, (2) 

(3) 

(4) 

The continuity and momentum equations are 

0 = - VP‘ + p g  + V‘SZ‘, 

z = p[V’v’ + (VV’)T]* 

where the primes denote dimensional quantities. The stress tensor is given by 

< n 

1 
i, 
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The boundary conditions are 
1. No-slip at the wall: 

v’= 0, at r’ = rk. 

2. Symmetry about r’ = 0 

a t  
ar’ -=O, at r ’ =  0. 

( 5 )  

3. Spatial periodicity of the surface (equation (1)). 
The set of equations and boundary conditions stated above is invariant to a co-ordinate 

transformation of the form 

V x ‘ )  
x’-x’+nl, n = 0 , 1 ,  ... 

Therefore, the solution to the set of equations can be proved to exhibit spatial periodicity, i.e. 
v’ and VP’ are spatially periodic. The fact that the gradient of the pressure field is spatially 
periodic means that the pressure can be decomposed into the sum of a periodic contribution 
and a linear term as follows (for details see Reference 13): 

APx’ 
PI=P;+- 

1 ’  (7) 

where P; is periodic and AP is the area averaged pressure drop through the unit cell, 

AP = P(x’ + I )  - P(x’). (8) 

The area-averaged pressure is defined as 

where AT(x’) is the local cross-sectional area of the tube. 
Substituting equation (7) into equation (3) yields 

(9) 

where ex is a unit vector in the x-direction and APjl is the pressure drop including hydrostatic 
contributions, defined by 

The statement of the problem can be reduced to its simplest form by choosing the following 
set of dimensionless variables: 

x = 2 j1 ,  (12) 

r = rlll, 113) 

P ,  = P&/(  - A Y ) ,  (14) 

v = @/( - 1AY). (15) 
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The basic equations in dimensionless form are 

G-v  = 0, 

O =  - G P , + G * t + e , ,  

t = GV + ( G v ) ~ .  (18) 
With boundary conditions 

v = 0, at r = r,(x), (19) 
av  
- = O ,  at r =0, 
ar 

v(x) = v(x * n), 
P*(x)  = P*(x  & n). 

It can be easily proved that this problem has a unique solution for the velocity field and a 
unique solution for the periodic part of the pressure field up to an arbitrary con~ tan t . ' ~  
Furthermore, the basic equations show that the solutions for v and P ,  are only functions of the 
geometry of the unit cell, namely r,(x). Therefore, for a given geometry, the solution to equations 
(16) to (22) provides all the information required to characterize the flow of a viscous fluid for 
any value of the density, the viscosity and the average pressure drop. Notice that a knowledge 
of v(x, r )  allows one to find, through equation (15), the proportionality relation between the 
macroscopic pressure drop (A9'/1)  and the flow rate. 

FINITE ELEMENT DISCRETIZATION 

The system of equations (16)-(22) was solved by means of the Galerkin finite element method. 
The integration domain (Q) is subdivided into M quadrilateral, straight-sided elements 
(Qm, m = 1,2,. . . , M). The velocity and pressure fields are approximated as follows: 

N 

O = 1 piti, 
i =  1 

N 

i =  1 
( i  = ip) 

PI*= C +ip*i, (24) 

where pi is a second-order approximating function and $i a first-order one, providing a mixed 
interpolation scheme. The circumflex in these equations represents approximate values, so that 
Oi and P ,̂i are the approximate values of velocity and periodic pressure at node i. The quantity 
N represents the total number of nodes in the system. Notice that Oi exists for all nodes i whereas 
P,i exists only for those nodes i = i, where a pressure approximation is defined. Fewer nodes 
are required in the approximation of P ,  owing to the nature of the mixed interpolation scheme. 

The mixed interpolation scheme chosen is particularly of two types of quadrilateral elements 
commonly used: the eight-node serendipity element and the nine-node Lagrangian element. Both 
elements result in a biquadratic approximation for the velocity field and a bilinear approximation 
for the pressure field. The fact that the pressure approximation is linear implies that there are 
four nodes defining pressure approximations in one element, whereas the velocity is defined in 
all the nodes (either eight or nine). The shape functions qi and t,hi for both types of elements, 
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along with some details regarding the structure of the approximations that they represent, can 
be found e l~ewhere . '~* '~  

The application of the Galerkin technique to the basic equations, along with the use of the 
approximations (23) and (24), leads to the following discretization of the problem.' 

Equation (16) leads to the continuity equation weighted residual statement: 

valid for all nodes i except i = i f f ,  where i f f  is an arbitrary node at which a datum level is set for 
the P ,  field (see below). 

Equations (17) and (18) lead to the momentum equation weighted residual statement 

(26) 
valid for all nodes i except i = is, where is denotes all nodes at the solid surface at which the 
no-slip condition is applied. This condition (equation (19)) is implemented in the form of 
admissibility constraints, 

oi = 0, (27) 
valid for nodes i = is. 

Finally, the complete determination of P ,  requires a datum level, which is obtained by 
substituting the continuity equation weighted residual at an arbitrary node by the admissibility 
condition 

P,, = 0, (28) 
valid at a node i = i,. The location of node i f f  in the finite element mesh had no appreciable 
effect in the solution except for very coarse grids. For convenience in the implementation of the 
computer program, i, was located at the solid surface. 

Equations (25) and (26) equated to zero plus equations (27) and (28) represent a complete 
linear system of algebraic equations. Notice that boundary conditions (20)-(22) do not appear 
explicitly in the final formulation. Condition (20) is a natural boundary condition that is used 
in the development of equation (26). The periodicity conditions (equations (21) and (22)) are, 
as we have discussed, a consequence of the translational symmetry of the domain of integration. 
This translational symmetry can be conceptualized as a condition imposed on the integration 
domain rather than on the dependent variables. Consider the periodic domain shown in Figure 2. 
According to our formulation, the dependent variables v and P ,  have the same functional form 
at two arbitrary lines AB and AB' separated by the unit cell length. Since the equations are not 
affected by the displacement of the x-axis over that distance, line AB can be conceptualized as 
being the same line A'B'. In other words, nodes ik and ik+ are mathematically equivalent, namely 
the equations for node i, will have contributions from elements mk and mk+l. This is the same 
as saying that the domain is 'closed' so that lines AB and A'B' coincide and, therefore, are not 
external boundaries of the domain. The closure of the domain through the periodicity boundary 
pre-empts the periodicity conditions. We followed this scheme in the numerical calculations 
since it simplified the formulation (essentially, the equivalence of the nodes at the boundaries 
eliminates one line of nodes). 

The absence of inertial terms in the momentum equations allows a simplification of the 
problem. If the unit cell is chosen so that the wall profile is symmetric about x = 0.5, as in 
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Figure 2. Periodicity and the integration domain 
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Figure 1, then it can be easily shown13 that the axial component of the velocity is also symmetric 
whereas the radial component of the velocity and the periodic pressure are skew-symmetric 
about x = 05. This fact allows a solution to the problem in half the unit cell, considerably 
reducing the computational effort. 

The finite element grids were generated by means of the isoparametric scheme presented by 
Herrmann." A typical grid arrangement is shown in Figure 3. The centre nodes in the nine-node 
element grids are located according to the following equations: 

where the subscripts *, c and m denote centre, corner and mid-side nodes, respectively. 
The integral terms in equations (25) and (26) were evaluated by means of 2 x 2 Gaussian 

quadrature. The use of straight-sided, distorted elements (see Figure 3 )  and a biquadratic 
approximation for the velocity fields implies that integrals with high order integrands are not 
evaluated exactly by 2 x 2 quadrature, as shown by Leone et a1.16 However, the overall error 
of the biquadratic approximation is of order two17 and the scheme used guarantees that integrals 
of second order terms are exact. Therefore, the error introduced by the 2 x 2 scheme is lower 
than the intrinsic error of the finite element formulation. Once the coefficients in equations (25) 
and (26) were evaluated, the resulting system of equations was solved by means of a frontal 
solver procedure, very similar to that described by Hood.' 

RESULTS 

A computer program was developed to solve the problem stated in the previous sections. The 
program was written in FORTRAN and run on a PDP-11 computer. Detailed results of the 
performance of the program as well as solutions for several wall geometries are reported by 
Saez.I3 In this paper we will present some results regarding the effect of the formulation of the 
momentum equation on the rate of convergence of the algorithm. We will also analyse the 
performance of eight- and nine-node elements. 

Effect of the formulation of the viscous terms on algorithm per$ormance 

The viscous flow equations of motion (equation (17)) can be formulated in two equivalent 
ways, one having V2v as the viscous term and the other having V - z .  The latter was used 
in the previous sections. The two formulations are mathematically equivalent, since 

and 
v - z  = v 2 v  + VjVV)', 

V.(Vv)' = 0 

because of continuity (equation (16)). However, the weighted residual statement is somewhat 
different in the two cases. If V2v is used as the viscous term in the original equation, then the 
term Vqi.GjVqj is not present in the last integral of equation (26). The fact that the two 
formulations are mathematically equivalent implies that they will converge to the same solution 
as the finite element grid is made finer. This does not mean that the results will be the same for 
coarse grids, so that the convergence behaviours of the two schemes can be different. Indeed, 
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1.0 

0.8 

the scheme that considers the viscous terms in the form V - t  has a faster rate of convergence. To 
illustrate this point, let us consider the solution to the flow problem in a sinusoidal tube with the 
following wall profile: 

r,(x) = O.l ( l  - 0.333 cos 2nx). (29) 
Figure 4 shows a comparison between the two schemes. In this Figure M ,  represents the number 
of elements of the grid in the x-direction. The calculations were performed with 6 elements in 
the r-direction ( M ,  = 6). Notice that M = M,M,. We have used as the parameter defining 
convergence the ratio Q,/QM, where Q, represents the minimum value of the flow rate as a 
function of x and QM the maximum. For coarse grids the maximum flow rate, QM, occurs at the 
constriction region whereas the minimum flow rate, Q,, occurs at the expansion region. As the 
grid becomes finer and the solution approaches the exact solution, the flow rate becomes 
independent of x and Q,/QM becomes equal to one. The results plotted in Figure 4 ( M ,  = 6) 
coincide with those obtained with M ,  = 5 and 4 so that convergence in terms of M ,  has been 
achieved. The difference between the two schemes is not large but it is certainly measurable (see 
Figure 4). These results show that the formulation of the equations of motion in terms of the 
gradient of the stress tensor (V. t) yields a computationally more efficient finite element algorithm. 

The ratio of flow rates, Qm/QM, is a strict measure of convergence since it is affected not only 
by the intrinsic error in the finite element computations, but also by the error involved in the 
calculation of the flow rates through numerical integration. We found that a flow rate ratio of 
0.9 was enough to get velocity and pressure profiles practically indistinguishable from the exact 
solution. 

- 

. 

Effect of element choice of algorithm performance 

The problem under consideration in the present work was solved by using two types of finite 
elements: the eight-node serendipity element and the nine-node Lagrangian element. As we 

A A  
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0 

A 0  

* ,  I I I I )  

1 3 5 7 9 11 

MX 
Figure 4. Effect of the formulation of the viscous terms on the rate of convergence: 0,  Vzv scheme; A ,  V . r  scheme 
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mentioned before, the total number of nodes in those elements corresponds to the nodes at which 
an approximate velocity is defined. The geometry of the element, as well as the pressure 
approximation, is linear so that it is defined by four nodes only. The Lagrangian elements are 
constructed by taking the product of one-dimensional Lagrange polynomials in both directions 
(r  and x), these polynomials being of the same order. For the case of bi-quadratic approximations, 
the number of coefficients is nine. Thus, if we approximate any function f in the r-x plane by 
means of Lagrangian second-order elements, the interpolating function, 3, would be given by 

f(’’(r, x) = a + br + cx + dr2 + ex2 + grx + hrx2 + jxr2 + kx2r2. 

On the other hand, the eight-node serendipity element is constructed by taking the product of 
a Lagrange interpolating polynomial of second order with a first-order polynomial. Hence, the 
eight-node element leads to an approximation of the form 

f ( 8 ) ( r ,  x) = a’ + b‘r + c’x + d r 2  + e‘x2 + g’rx + h’rx2 +j’xr2. 

The only structural difference between the two approximations is the fourth order term x2r2. 
As pointed out by Taylor,” both schemes provide a complete set of functions for second-order 
approximations. F~r thermore , ’~  the error is of the same order of magnitude, since terms of 
global order 3 or 4 do not contribute to the error bounds. Hence, the two schemes should have 
similar performances in terms of global accuracy. 

The fact that the nine-node element introduces an extra variable indicates that the eight-node 
element should be more efficient from a computational point of view. As a matter of fact, this 
idea led to the formulation of elements of the serendipity type by Zienkiewicz et aL2’ However, 
the extra variable, represented by the centre node, can be appropriately removed from the 
formulation by means of algebraic manipulation of the equations. The resulting system of 
equations has a similar structure for both elements in that the only difference lies on the coefficients 
of the element matrices. Therefore, the computational effort is similar for both elements. 

It has been observed in previous investigations that the two elements under consideration 
have in some cases different performances. For instance, Huyakorn et aL7 concluded that the 
eight-node element was ostensibly less accurate that the nine-node element after using both of 
them in two test problems. The inaccuracies exhibited by the solution employing eight-node 
elements were basically the presence of a n  oscillatory behaviour of the approximate pressure 
fields. One of the test problems solved by Huvakorn et al. is very similar to the one considered 
in this work. These investigators solved the Navier-Stokes equations corresponding to steady 
flow through a sudden expansion. This problem differs from the flow through periodically 
constricted tubes mainly in the boundary conditions. Huyakorn et al. imposed a parabolic, 
Poiseuille flow boundary condition at  the entrance of the system (constriction) whereas at  the 
exit (expansion) they considered that the normal stress was equal to zero. As we discussed before, 
the periodicity of the geometry in the periodically constricted tube implies that the boundary 
conditions for the velocity and the periodic part of the pressure field at  entrances and exits can 
be transformed to a constraint imposed on the integration domain. 

We obtained two types of results when eight- and nine-node elements were used to solve the 
problem under consideration, depending on the geometry of the unit cell. To illustrate these results, 
let us consider a sinusoidal wall geometry. For low to moderate values of the amplitude 
of the wall oscillations, both elements give indistinguishable results in terms of velocity and 
pressure fields for all grid sizes. For example, for the wall profile given by equation (29), Figures 
5-7 show axial velocity profiles and periodic pressure profiles obtained by using a grid of 60 
elements. The dots correspond to the results of using nine-node elements and the solid line is a 
smooth line drawn through the points resulting from using eight-node elements. The solution 
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Figure 5. Axial velocity at x = 0. Wall profile described by equation (29) 
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Figure 6. Axial velocity at x = 05.  Wall profile described by equation (29) 

presented in Figure 5-7 coincides with those reported by Fedkiw and Newman’ and Neira and 
Payatakes’l for the same problem. 

When the amplitude of the wall oscillations is large, a recirculation zone starts to appear near the 
wall of the tube in the expansion region. Under these conditions the nine-node element becomes 
unstable in the description of the velocity field and the instabilities are propagated throughout the 
whole domain of integration. For example, let us consider the sinusoidal tube with wall profile 
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Figure 7. Periodic pressure field at r = 0. Wall profile described by equation (29) 
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Figure 8. Axial velocity at x = 0. Wall profile described by equation (30) 
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Figure 8. Axial velocity at x = 0. Wall profile described by equation (30) 

given by 

Y,(x) = 3( 1 - 0.7 cos 2 7 ~ ~ ) .  

61 1 

Figures 8-10 show the velocity profiles obtained for both types of elements for a grid of 180 
elements. The solid lines are, again, smooth lines through the eight-node element results and 
the dots are the nine-node element results. The dots have been joined by dashed lines for a 
better visualization of the oscillatory behaviour. The eight-node results shown were the same 
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Figure 9. Axial velocity at x = 0.5. Wall profile described by equation (30) 
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Figure 10. Axial velocity at r = 0. Wall profile described by equation (30) 

as those obtained with a coarser grid of 60 elements, indicating that convergence has been 
achieved. The nine-node results kept oscillating with a period equal to the element size even for 
finer grids so that convergence was never achieved for this type of element. The magnitude of 
the oscillations is not very large but they are relatively important especially in representing 
variations of u, with respect to x (Figure SO). Even though in the average both elements give 
very similar results, the instabilities of the nine-node element could lead to high errors if those 
results were used in other types of calculations such as the evaluation of dispersion coefficients. 
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Figure 11. Periodic pressure field at r = 0. Wall profile described by equation (30) 

Regarding the pressure field, we can observe (see Figure 11) that both elements give exactly 
the same results. Notice that the results obtained in the present work show a completely opposite 
behaviour to those obtained by Huyakorn et al.’ in the case of flow through a sudden expansion. 
In our case the oscillations are exhibited by the nine-node element solution in the velocity field 
whereas in their case the oscillatory patterns were observed in the pressure field by the eight-node 
element solution. We should emphasize that the only qualitative differences between the two 
problems are the boundary conditions at entrances and exits. 

As we pointed out before, the only difference between the eight- and nine-node element 
approximations is the presence of a fourth-order term (r2x2) in the approximating function of 
the Lagrangian nine-node scheme. It is possible then to speculate that this term has an important 
effect on the stability of the solution. The global effect seems to be the occurrence of a decoupling 
between vertex and mid-side and centre nodes in the nine-node elements: if we plot the velocity 
profiles by considering only vertex or mid-side and centre nodes, we obtain two different smooth 
curves. We have not found an explanation for this behaviour. Further studies are required to 
establish the cause and possible solutions for this problem. 

CONCLUSIONS 

A study of the performance of various finite element formulations in the solution of the flow 
problem through periodically constricted tubes was performed. It was found that the use of the 
continuity equation to reduce the viscous terms in the Stokes equations from the gradient of 
the stress tensor to the Laplacian of the velocity decreased the rate ofconvergence of the algorithm. 

It was determined that the eight-node serendipity element is more adequate in this case than 
the nine-node Lagrangian element for tubes with large expansion zones. The nine-node element 
solution exhibited oscillatory velocity fields even for very line grids whereas the eight-node 
element converged smoothly to the final solution. The accuracy in the prediction of the pressure 
field was the same for both types of elements. 

The results obtained in the present work, when compared to previous results available in the 
literature, indicate that the boundary conditions play a crucial role in determining the performance 
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of certain types of finite elements. This fact calls for more extensive theoretical work in order to try 
to establish the causes of unstable patterns. 
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